

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 1C

Question number	Answer		Notes	Marks
1 (a)				5
	Description a good conductor of electricity	Substance lithium	ALLOW Li	
	an element that is a liquid at room temperature	bromine	ALLOW Br/Br ₂ REJECT Br	
	a substance that can be used to form a polymer	ethene	ALLOW C ₂ H ₄	
	an element that forms a basic oxide	lithium	ALLOW Li	
	a substance that has a giant covalent structure	diamond		
(b)	A description that refers to the form M1 (use damp blue) litmus paper M2 (litmus paper) bleached/turns Ignore gas/solution		ALLOW universal indicator paper ACCEPT blue litmus paper turns red and then bleached IGNORE gas/solution ALLOW M1 bromide solution M2 turns brown REJECT iodide solution M2 dep on M1 Red litmus paper turns blue then bleaches/turns white scores M1 only	2
				Total 7

Question number	Answer	Notes	Marks
2 (a) (i)	most reactive Q S R least reactive P		1
(ii)	R		1
(iii)	aluminium + hydrochloric acid $ ightarrow$ aluminium chloride + hydrogen	ALLOW 2Al + 6HCl \rightarrow 2AlCl ₃ + 3H ₂ or multiples or fractions	1
(iv)	copper/silver/gold	ALLOW platinum or any other metal that does not react with hydrochloric acid ALLOW correct symbol	1
(v)	explosive/dangerous/violent/unsafe	IGNORE volatile/vigorous	1
(b) (i)	heat/thermal energy is given out/released (to the surroundings)	IGNORE energy on its own	1
(ii)	aluminium is more reactive/ higher in the reactivity series (than iron) ORA	ACCEPT aluminium is a better/stronger reducing agent	1
		ALLOW AL	
(iii)	An explanation that links the following two points		2
	M1 aluminium/Al gains oxygen and iron(III) oxide /Fe ₂ O ₃ loses oxygen M2 (so) aluminium/Al is oxidised and iron(III) oxide /Fe ₂ O ₃ is reduced	ACCEPT aluminium/Al loses electrons and iron ions/Fe ³⁺ gain electrons for M1	
	OR	ACCEPT correct changes in oxidation numbers	
	M1 Aluminium/Al gains oxygen so is oxidised	ACCEPT aluminium/Al loses electrons so is	
	M2 Iron(III) oxide/Fe₂O₃ loses oxygen so is reduced	oxidised scores for M1 and iron ions/Fe ³⁺ gain electrons so is reduced for M2	
		REJECT iron loses oxygen for M2	
			Total 9

Question number	Answer	Notes	Marks
3 (a) (i)	2	ALLOW two	1
(ii)	3	ALLOW three	1
(iii)	ZF ₂	ALLOW MgF ₂ ALLOW F ₂ Mg ALLOW F ₂ Z REJECT MgFl ₂	1
		Penalise incorrect case or superscripts	
(b)	M1 $12 \times 6.0 \times 10^{23}$ M2 7.2×10^{24}	ALLOW ecf if incorrect number of electrons x 6.0 x 10 ²³	2
		ALLOW ecf if /12 ONLY rather than x12 giving 5(.0) x10 ²²	4
(c)	M1 (isotopic masses) 24, 25 and 26		
	M2 $79.0 \times 24 + 10.0 \times 25 + 11.0 \times 26$ OR 2432	M2 subsumes M1	
	M3 $79.0 \times 24 + 10.0 \times 25 + 11.0 \times 26$ OR 2432 OR 24.32	ALLOW ecf if incorrect mass numbers used 12.3 scores 3 with working	
	100 100	24.3 without working scores 4	
	M4 24.3	24.32 without working scores 3	
		M4 scores only if numbers from the table are used.	
(d)	magnesium	ALLOW Mg	1
			Total 10

Question number	Answer	Notes	Marks
4 (a) (i)	24		1
(ii)	M1 12 × 8 + 1 x 10 + 14 × 4 + 16 × 2 M2 194	correct answer of 194 scores 2 No ECF	2
(iii)	$C_4H_5N_2O$	ALLOW atoms in any order	1
(b) (i)	(simple) distillation	REJECT fractional distillation	1
(ii)	A description that refers to two of the following points M1 (the condenser/X) cools the (ethanol) vapour		2
	M2 so it condenses OR forms liquid (ethanol)		
(c)	M1 calcium bromide is a giant (ionic) lattice/structure		5
	M2 with many/strong electrostatic attractions between (oppositely charged) ions	ALLOW many/strong ionic bonds No M2 if covalent bonds or IMF given here	
	M3 caffeine has a simple molecular structure	ALLOW simple covalent structure	
	M4 caffeine has weak intermolecular forces /weak forces between molecules	REJECT weak forces between bonds	
	M5 more energy is needed to break the electrostatic attractions (in calcium bromide) than to overcome the intermolecular forces (in caffeine) OWTTE	No M5 if reference to breaking covalent bonds No M5 if reference to incorrect bonds	
			Total 12

Question	Answer	Notes	Marks
number	1		
5 (a) (i)	An explanation that links the following two points	ALLOW dye in place of spot throughout question 5	2
	M1 They will not dissolve/diffuse into the solvent (at the bottom of beaker) OWTTE	ALLOW water	
	M2 so that the dyes can travel up the paper		
(ii)	An explanation that links the following two points		2
	M1 E and H	M2 dep on M1	
	M2 as the dye is/both have a spot at the same level/travelled the same distance/same Rf value		
(iii)	An explanation that links the following two points		2
	M1 The student can only be certain about G containing one dye as only one spot		
	M2 As F is insoluble/not moved (so you cannot tell how many dyes it has) OWTTE		
(b)	M1 distance from baseline to solvent level in mm = 65		3
	M2 distance from baseline to spot/dye in mm = 39	ACCEPT any value between 38 and 41 inclusive	
	M3 (R_f value = $39 \div 65 =)0.6$	ACCEPT any value between 0.57 and 0.64	
		M3 not awarded if value is incorrectly rounded	
			Total 9

2
S
2
ution
rms
2
1
2

(c) (ii)	M1 (mass of water =) 23.7 – 12.9 OR 10.8	correct answer of 12 without working scores 4	4
	M2 (moles of KAl(SO ₄) ₂ =) 12.9 \div 258 OR 0.05(00)	ALLOW ecf on incorrect mass of water	
	M3 (moles of water =) 10.8 ÷ 18 OR 0.6(00)		
	M4 $(x = 0.6 \div 0.05 =) 12$	answer to M4 must be a whole number	
		ACCEPT alternative methods	
			Total 13

Question number	Answer	Notes	Marks
7 (a)	D (80%) A is incorrect as there is not approximately 1% of nitrogen in the atmosphere B is incorrect as there is not approximately 20% of nitrogen in the atmosphere C is incorrect as there is not approximately 70% of nitrogen in the atmosphere		1
(b)	M1 3 pairs of electrons between the two nitrogen atoms M2 rest of molecule fully correct	ALLOW any combination of dots and crosses M2 dep on M1	2
(c) (i)	$4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$ M1 all formulae correct M2 balancing of correct formulae	ALLOW multiples and fractions IGNORE state symbols even if incorrect M2 dep on M1	2
(ii)	any one environmental effect of acid rain e.g. acidifies lakes /kills fish /deforestation /damages plants /corrodes marble statues /corrodes buildings	ACCEPT any other environmental effect REJECT ozone layer IGNORE climate change	1
(d) (i)	D (NH ₄) ₂ CO ₃ A is incorrect as NH ₃ CO ₃ is not the formula of ammonium carbonate B is incorrect as (NH ₃) ₂ CO ₃ is not the formula of ammonium carbonate C is incorrect as NH ₄ CO ₃ is not the formula of ammonium carbonate		1

			Total 13
		No M5 and M6 if limewater added directly to the solution.	
		correct limewater test on carbon dioxide gas is carried out	
	M6 (limewater) turns cloudy/milky/white precipitate	M6 can be awarded independently if a	
	M5 test the gas/carbon dioxide with limewater	M5 dependent on gaining M4 by adding acid ONLY to the solution	
	M4 add (hydrochloric) acid ONLY	ACCEPT other acids	
	Test for carbonate ions		
		No M2 and M3 if litmus paper added directly to the solution	
	M3 (red litmus) turns blue	M3 can be awarded independently if ammonia gas is correctly tested with correct colour change	
	paper	OR can be awarded for heating the solution and producing a gas to test	
	M1 add sodium hydroxide solution (and heat) M2 test the gas/ammonia with (damp) red litmus	M2 is dependent on M1	
		indicator paper which turns blue/purple for M2 and M3	
· ,	Test for ammonium ions	ACCEPT universal	
(ii)	A description that refers to the following six points		6

Question number	Answer	Notes	Marks
8 (a) (i)	An explanation that links the following two points		2
	M1 (compounds with) the same molecular formula	ALLOW same number of carbons and hydrogens/atoms of each element	
		REJECT elements with the same molecular formula	
		REJECT chemical formula for M1	
	M2 but different structural/displayed formulae	ALLOW different structures/arrangements of atoms	
		M2 independent of M1	
(ii)	M1		2
(11)	н н н н 	Must show all bonds	_
	H H	ALLOW cis and trans isomers for both marks	
	H H H H-C-C-C-C H H H H-C-H H	REJECT cycloalkanes	
(b)	A (addition)		1
	B is incorrect as this is not a combustion reaction C is incorrect as this is not a decomposition reaction D is incorrect as this is not a substitution reaction		
(c) (i)	H CH ₃ I I	IGNORE brackets and n	1

(ii)	<pre>M1 they are inert/unreactive/do not biodegrade/decomposes (very) slowly/running out space M2 they produce toxic fumes/greenhouse gases (when burned)</pre>	IGNORE global warming	2
(d)	M1 y (= $396 \div 44$) = 9 M2 z (= $180 \div 18$) = 10 M3 x = 14	ALLOW ecf for M3 on incorrect values for M1 and/or M2	3
(e) (i)	$\frac{C_8H_{18}(l)+7O_2(g) \rightarrow 5CO(g)+3C(s)+9H_2O(l)}{\text{M1 correct balancing}}$ M2 correct state symbols	ACCEPT (g) for H ₂ O	2
(ii)	M1 carbon monoxide/CO M2 is poisonous/toxic/limits the capacity to carry oxygen in the blood	ALLOW carbon/C ALLOW soot causes respiratory problems ACCEPT correct references to haemoglobin M2 dep on M1 IGNORE harmful	2
			Total 15

	Questio number		Answer	Notes	Marks
9	(a)	(i)	carbon dioxide/a gas is given off	IGNORE marble dissolving	1
				IGNORE gas formed	
		(ii)	to prevent acid spray from leaving the flask OWTTE	IGNORE to stop solid from escaping	1
	(b)	(i)	Any two linked pairs from the following:	IGNORE comments linked to rate of	4
			M1 the curve is steep(est) at the start/the loss in mass is fastest at the start	reaction	
			M2 because the acid concentration is highest/maximum number of reacting particles	Max 2 marks for M1, M3 and M5	
			OR		
			M3 curves becomes less steep/the loss in mass slows down		
			M4 acid becomes more dilute/less concentrated		
			OR		
			M5 curve levels off/becomes flat/plateaus/the loss in mass stops		
			M6 acid has been used up		
		(ii)	M1 curve drawn starting at the origin and below the original curve		2
			M2 curve levels off at 0.27 g + or - half a small square		
	(c)		An explanation that links the following three points		2
			M1 the rate of reaction would increase/be faster		3
			M2 (because) the smaller marble chips have a greater surface area	IGNORE less chance of collisions	
			M3 (so) there will be more collisions per unit time	ACCEPT more frequent collisions	
				MAX 1 mark if reference to particles having more energy or moving faster	
					Total 11

Question number			Notes	Marks
10 (a)	Mg + $2HNO_3 \rightarrow Mg(NO_3)_2 + H_2$		IGNORE state symbols even if incorrect	1
(b)	temperature of the acid at the start in °C	16.0	Must be given to 1dp ALLOW ECF from	2
	highest temperature reached in °C	32.4	incorrect highest temperature reached	
	temperature rise in °C	16.4	ALLOW ECF from an incorrect starting temperature	
(c) (i)	M1 $Q = 40 \times 4.2 \times 16.4$ M2 2755 (J)		ACCEPT any number of sig figs except 1	2
(ii)	 find the amount of magnesium in moles divide Q by n convert answer in J/mol to kJ/mol answer including sign to 2sf 			4
	M1 $n(Mg) = 0.12 \div 24$ OR 0.005 M2 $Q \div n$ OR 2755 ÷ 0.005 OR 551 (M3 551 000 ÷ 1000 OR 551 (kJ/mol	correct answer with minus sign and without working scores 4 ACCEPT use of 2760 or 2800 ALLOW ECF on incorrect answer to (i) and/or M1		
	M4 – 550 (kJ/mol)		ALLOW ECF on incorrect answer to M2 ALLOW ECF on incorrect answer to M3 M4 - to score must be to 2sf and have correct sign Use of 2800 gives an answer of — 560 (kJ/mol)	

(d)	An explanation that links the following two points		2
	M1 polystyrene is an insulator/poor conductor OWTTE		!
	M2 (so) there is less heat loss/more heat retained (compared to the glass beaker)	REJECT no heat loss	
			Total 11